Skip to content

Posts from the ‘Dispersal’ Category

A process based metacommunity framework – new paper in Ecology Letters

Bram was part of a working group hosted by the German Integrative Biology Institute in Leipzig that had the ambition to better understand how communities interact in space by including a much needed temporal dimension. In a first paper lead by Patrick Thompson, we present a novel framework to understand (and study) how ecological communities can interact in space and how this leads to different temporal dynamics in community data. Instead of trying to infer process from community patterns, this framework explicitly varies three underlying processes (density dependent competition, density independent environmental filtering and dispersal) and shows that by doing this a whole range of possible metacommunity dynamics can be obtained including all currently known and described dynamics as well as a range of dynamics that have remained unconsidered and unstudied.

We believe it can be an important first step to achieve a much needed synthesis in the field of metacommunity ecology.

The study was published as an “Idea and perspectives” piece in the journal Ecology Letters

https://onlinelibrary.wiley.com/doi/full/10.1111/ele.13568

 

 

Mosquitoes make compromises – new paper in Ecology Letters

Tough decision making is not restricted to human societies. While male mosquitoes happily feed on the nectar in our gardens, female mosquitoes invade our bedrooms at night attracted by the proteins in our blood. They need this resource to produce eggs that are subsequently deposited in freshwater habitats where the larvae grow. However, not every pond or ditch is a good breeding ground and therefore gravid mosquitoes tend to be very picky. This is because mosquito larvae feature prominently on the menu of a whole range of predators such as fish and voracious larvae of water beetles and dragonflies. To ensure survival of their offspring, mosquito mums must therefore deposit their eggs in habitats where these killers are absent. It was already known that mosquitoes avoid the smell of fish when they are looking for a place to lay their eggs. However, in a new study in the journal Ecology Letters, we show that mosquitoes do not only avoid reproduction in local ponds that smell fishy, but also in neighboring fishless ponds in the surrounding landscape. Although several researchers have suggested that the smell of predators can be used as a chemical repellent to prevent mosquitoes from reproducing , we show that this may not work very well. If the smell of fish is everywhere, mosquitoes seem to be smart enough to realize that there are no better alternatives and happily lay their eggs, even if the environment smells fishy.  Just like politicians, mosquitoes seem to be able to make compromises and, in the absence of better options, will settle for a bad deal.

It was the first time that this process, which in the specialized literature is known as habitat compromise, could be demonstrated in nature. Releasing fish is a classical strategy to control mosquitoes. However, this approach is controversial as many biting mosquitoes reproduce in habitats where fish cannot survive such as ephemeral pools, gutters, buckets and other containers where rainwater accumulates. Additionally, releasing fish in ponds has negative effects on the diversity of other organisms. For instance, in Western Europe, a number of rare dragonfly species and amphibians such as the tree frog and the crested newt, can only successfully reproduce when their larvae are not consumed by fish. Yet, even when fish cannot be released, there are perspectives for the application of predator smell for mosquito control. Artificial fish smell chemicals might help to concentrate mosquitoes in a few selected water bodies in a landscape where the eggs and larvae can be eradicated locally. From an environmental perspective it will certainly be preferable to spray large areas with fish chemicals rather than insecticides. However, further research will be needed to confirm whether such an approach is practically feasible. The exact volatile fish chemicals to which mosquitoes respond are also still unknown.

The paper is out now in Ecology Letters

Mossing around

Mosses are more than just plants, for a wild variety of tiny animals, moss patches are veritable jungles. Yet, few animal ecologists have ventured into this world (but see and see). We did a first field survey to study spatial variation in biodiversity on moss islands that form on tree trunks. It was a small project that formed the BSc thesis of Mario Driesen and under supervision of Hendrik Trekels. In this pilot study we wanted to test whether typical island biogeography principles apply to moss islands. Despite the insular structure, small scale variation in isolation and island size don’t seem to matter for biodiversity. Canopy cover was the most important environmental variable. However, overall, we conclude that invertebrate composition in moss patches may not only depend on local patch conditions, in a particular moss species. It also depended on the presence of other moss species in the direct vicinity which can be dispersal sources of other species.

The work has been published in Acta Oecologica

WP_20160414_10_09_01_Pro

A moss island in the Sonian forest

DSC_3851

Mario in the field (albeit not in the Sonian forest)

Habitat selection in a bomb crater pond network

Foto copyright Tom De Bie

Bomb crater network in Hasselt (photo copyright Tom De Bie)

This summer, Hendrik is running a large scale mesocosm experiment to study habitat selection in aquatic insects. He put his cattle tanks in a unique location: a nature reserve that houses more than 100 bomb craters. These craters result from an attempt of the Americans to bomb the railwaylines in Hasselt during World War II. Now it is a remarkably diverse set of aquatic habitats.

Specifically for the experiment it is convenient that the system houses a substantial diversity of aquatic insects and that many pools are subject to drying which stimulates dispersal.

20150903_133528