New paper: The sunglasses effect – egg shell pigmentation modulates hatching in zooplankton

In freshwater zooplankton, that survive unfavorable periods of winter cold or drought as dormant eggs in the sediment, light is an important cue that may activate the embryo to hatch. If no light is detectable then the egg is probably buried and it would be a bad idea to hatch. We investigated the light-activation process of zooplankton resting eggs using a rock-pool fairy shrimp as a model. We showed that light activation entails a relatively simple mechanism involving a light-energy threshold. These results illustrate the potential adaptive value of light activation but also highlighted the possible role of variation in eggshell pigmentation as a risk-spreading strategy. How does this work?
Much like a pair of sunglasses, the egg shell modulates how much light is absorbed. Consequently embryos in eggs with a darker egg shell should be less responsive to light. This is exactly what we found. In darker eggs, the embryo responds later, presumably because the light energy threshold is reached later. Given that there is often strong variation in the color of eggs in populations and in clutches of eggs, this simple ‘sunglasses effect’ can ensure that not all eggs will hatch at the same time. As a result the emerging larvae that use different food sources when they get older are less likely to compete with one another. As such, it could represent a simple, yet potentially effective risk spreading strategy.
While the effectiveness of this strategy within inundations was demonstrated, its potential role in spreading hatching over different inundations remains unknown. Tests are needed to assess whether degradation of pigments over time may be an adaptive mechanism that prevents resting eggs from becoming locked in diapause. Additionally, given the similarities in observed responses to light activation in both crustacean resting eggs and plant seeds, parallel patterns in these taxonomically distant groups might possibly reflect an old evolutionary mechanism tapping the same biochemical pathways, but this hypothesis also remains to be confirmed.
The paper is accessible via this link:
Pinceel et al 2013_light induced dormancy termination